Fourier Analysis ⁰³ - 12 Review . Def. A sequence of numbers $(x_n)_{n=1}^{\infty}$ in $[0,1)$ is said to be equidistributed in [o, 1] if the following \mathcal{G} olds : $\qquad \qquad \forall\ \ (\text{$a,b\}$\subset\ [\text{$o,1$}),$ \bigcirc $\lim_{N \to \infty} \frac{1}{N}$ $\# \left\{ \downarrow \leq n \leq N : \quad \alpha_n \in (a, b) \right\} = b - a$ Thm 1 (Weyl) Let γ be an irrational number. Then the sequence $(\{n\})_{n=1}^{\infty}$ is equidistributed \mathfrak{m} [0,1). Here $\{x\}$ denotes the fractional part of x. More general, Weyl proved the following result: Thm2 (Weyl's criterion). Let $(x_n)_{n=1}^{\infty} \subset C_0$, i). Then (x_n) is equidistributed in [o, 1] if and only if (1) $\lim_{N \to \infty} + \frac{1}{N} = \sum_{n=1}^{N} e^{iN}$ otributed
<mark>2πiβxn</mark> $=$ o for all $R \in \mathbb{Z} \setminus \{0\}$

$$
\rho f. We first prove the necessity.\nWe assume that (x_n) is equivalentized in [0, 1).
\nBy definition, we have
\n(2) $\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} \mathcal{N}_{(a,b)}(x_n) = \int_{0}^{1} \mathcal{N}_{(a,b)}(x) dx \quad \forall (a,b) \in [0, 1]$
\nLet follows that for any step function f of the form
\n $f(x) = \sum_{i=1}^{N} C_i \mathcal{N}_{(a_i, b_i)}(x)$,
\nWe have
\n(3) $\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} f(x_n) = \int_{0}^{1} f(x) dx$.
\nWe claim that (3) also holds for any $f \in \mathcal{R}[0, 1]$.
\nTo see it, let $f \in \mathcal{R}[0, 1]$. Let $2 > 0$. Then \exists two
\nsept functions, Say q^+ , q^- such that
\n $q^- \leq f \leq q^+$
\nand $\int_{0}^{1} g^+ - f dx < \epsilon$, $\int_{0}^{1} f - g_- dx < \epsilon$.
$$

Now
\n
$$
\lim_{N \to \infty} \frac{N}{N} \frac{\beta(x_n)}{\beta(x_n)} \le \lim_{N \to \infty} \frac{1}{N} \frac{N}{n^2} \frac{q^4(x_n)}{\beta(x_n)}
$$
\n
$$
= \int_{0}^{1} q^4 dx < \int_{0}^{1} f dx + \epsilon
$$
\nSimilarly
\n
$$
\lim_{N \to \infty} \frac{1}{N} \frac{N}{n^2} \frac{q^2(x_n)}{\beta(x_n)} \ge \lim_{N \to \infty} \frac{N}{N} \sum_{n=1}^{N} q^2(x_n)
$$
\n
$$
= \int_{0}^{1} q^2 dx > \int_{0}^{1} f dx - \epsilon
$$
\nSince 2 is arbitrarily taken, we see that ③ holds
\nfor any $f \in \mathbb{R}[0,1)$. In particular, taking $f = e^{2\pi i kx}$
\nin ③ we obtain
\n(1) $\frac{N}{N} \sum_{n=1}^{N} e^{2\pi i kx_n} \longrightarrow \int_{0}^{1} e^{2\pi i kx} dx = 0$ if $Re \ge \begin{cases} \frac{5}{2} \end{cases}$
\n• Next we prove the sufficiency.
\nSuppose (1) holds. Then, for any trigonometric polynomial
\n $f = \sum_{n=1}^{N} C_n e^{2\pi i n x}$

We have
\n(3)
$$
\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} f(x_n) = \int_{0}^{1} f(x) dx
$$

\nThen by Weierstrass Approximation Thm, we see that
\n(3) also holds for any continuous functions on [0,1]
\nWe still need to show that (3) also holds for $f \in \mathbb{R}[0,1]$.
\nLet $f \in \mathbb{R}[0,1]$. Let $f(x) = 0$. Then we can find
\ncontinuous functions $f_1^+, f_1^-,$ such that
\n $f_1 \leq f \leq f_1^+$
\nand $\int_{0}^{1} \theta_1^+ \cdot f_1 dx < \theta_1^-$, $\int_{0}^{1} \cdot f_1 \cdot f_1 dx < \theta_1^-$
\n $\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} f(x_n) \leq \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} f_1^+(x_n)$
\n $= \int_{0}^{1} \theta_1^+ dx < \int_{0}^{1} \cdot f_1 dx + \theta_1$
\nSimilarly, $\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} f(x_n) > \int_{0}^{1} f_1 dx - \theta_1$.

Hence (3) holds for
$$
f \in \mathbb{R}
$$
 [0, 1). In particular,
\n(3) holds for $f = \mathcal{U}_{(a,b)}$, $(a,b) \in [0,1)$
\nThat is, (χ_n) is equidistributed.
\n
\n844 A continuous but nowhere differentiable functions.
\n• Riemann (1861) constructed that following functions.
\n• Riemann (1861) constructed that follows functions.
\nR(x) = $\sum_{n=1}^{\infty} \frac{1}{n^2} \sin(n^2x)$, $x \in \mathbb{R}$.
\nIt is clear that R is $\text{cis} \text{ on } \mathbb{R}$. Riemann guessed that
\nR(x) is nowhere drift.
\n• Hardy (1916): R(x) is not drift at x if $\frac{x}{\pi}$ is irrational.
\n• Gever (1969): R(x) is $\text{dof} \uparrow \Leftrightarrow \frac{x}{\pi} = \frac{P}{2}$, P. 1 odd
\n• Weierstrass gave that following first example
\nof $\forall x$ but nowbone $\text{dof} \uparrow$ functions :

$$
W(x) = \sum_{n=0}^{\infty} \int_{0}^{n} \cos (a^{n}x), \text{ where } a > 1, o26 < 1,
$$

\nRemark: $\int \rho gh e^{-Rn \cdot \rho m}$ nowadays that "ab > 1 + $\frac{3\pi}{2}$ " can
\nbe weaker to ab > 1.
\nHere we prove a special version of Weierstrass's
\nresult.
\n $\int_{0}^{x} (x) = \sum_{n=0}^{\infty} \int_{0}^{-nA} e^{i 2^{n}x}, \text{ } x \in \mathbb{R}$
\nis cts but nowhere differentiable.
\n $\int_{0}^{x} (x) = 2 \cdot 2^{nA} e^{i 2^{n}x}, \text{ } x \in \mathbb{R}$
\n $\int_{0}^{x} (x) = 2 \cdot 2^{nA} e^{i 2^{n}x}, \text{ } x \in \mathbb{R}$
\n $\int_{0}^{x} (1 - \frac{\ln 1}{1})^{x} e^{i x}, \text{ } x \in \mathbb{R}$
\n $\int_{0}^{x} (1 - \frac{\ln 1}{1})^{x} e^{i x}$
\nBy a direct calculation,
\nBy a direct calculation,

$$
\Delta_{N}(q)(x) = 2\delta_{2N}(q)(x) - \delta_{N}(q)(x)
$$
\n
$$
= 2 \cdot \sum_{|n| \leq 2N} (1 - \frac{|n|}{2N}) \hat{q}(n) e^{inx}
$$
\n
$$
- \sum_{|n| \leq N} (1 - \frac{|n|}{N}) \hat{q}(n) e^{inx}
$$
\n
$$
- \sum_{|n| \leq N} (1 - \frac{|n|}{N}) \hat{q}(n) e^{inx}
$$
\n
$$
= \sum_{|n| \leq N} \hat{q}(n) e^{inx} + \sum_{|N| \leq 2N} 2(1 - \frac{|n|}{2N}) \hat{q}(n) e^{inx}
$$
\n
$$
= \delta_{N}(q)(x) + \sum_{|N| \leq 2N} 2(1 - \frac{|n|}{2N}) \hat{q}(n) e^{inx}
$$
\n
$$
\sqrt{2N} \sqrt{2N}
$$
\n
$$
\sqrt{2N} \sqrt{2N}
$$
\n
$$
\Delta_{N}(f_{\alpha}) = \delta_{N}(f_{\alpha}) + \sum_{2^{k} \leq |n| \leq 2^{m+1}} 2^{(1 - \frac{|n|}{2^m})} \hat{f}_{\alpha}(n) e^{inx}
$$
\n
$$
= \delta_{N}(f_{\alpha})
$$
\n
$$
= \sum_{n=0}^{m} 2^{-nd} \cdot e^{i2^{k}x}
$$
\n
$$
\Delta_{2N}(f_{\alpha})(x) - \Delta_{N}(f_{\alpha})(x) = 2^{-\frac{(m+1)d}{2} \cdot 2^{\frac{m+1}{2}}}
$$

Prop 4. For any
$$
g \in \mathbb{R}[\pi, \pi]
$$
, if g is diff at x_{0} ,
\nthen\n
$$
\Delta_{N}(g)'(x_{0}) = O(\log N).
$$
\n
$$
\Delta_{n}(g)'(x_{0}) = O(\log N).
$$
\nEquation 1: The equation is 6×9 notation.

\n(it means that $\exists a \text{ const } C \text{ s.t. } |LHS| \leq C \cdot \log N$ for $N \geq 1$)

\nNow we prove that $\text{Prop 4 implies } \text{Thm 3}.$

\nPropose on the contrary that $\int a$ is diff at x_{0} .

\nThen by Prop 4 ,

\n
$$
\Delta_{N}(\int_{a}^{1}x_{0}) = O(\log N).
$$
\nHence

\n
$$
\Delta_{2N}(\int_{a}^{1}x_{0}) - \Delta_{N}(\int_{a}^{1}x_{0}) = O(\log N + \log 2).
$$
\nTaking $N = 2^{m}$ gives

\n
$$
\frac{d}{dx}(2^{-(m+1)a} \cdot e^{\frac{i}{2} \cdot \frac{m+1}{2}}) = O(\log 2 + \log 2).
$$

but it means
\ni
$$
2^{(m+1)(1-d)} \cdot e^{i 2^{m+1} \cdot x_0} = O(m+1 \log 2)
$$

\nthat is,
\n $2^{(m+1)(1-d)} = O((m+1) \log 2)$,
\nleading to a contradiction.
\n \square
\nIn the end we prove Prop 4.
\n \square
\n \square

Then

\n
$$
|F'_{N}(x)| \leq (2N+1) N \leq A N^{2}
$$
\nNow

\n
$$
F'_{N}(x) = \frac{\sin(\frac{N}{2}x) \cos(\frac{N}{2}x)}{\sin^{2}\frac{x}{2}} - \frac{\sin^{2}(\frac{N}{2}x) \cos(\frac{N}{2})}{N \sin^{3}(\frac{N}{2})}
$$
\nHence

\n
$$
|F'_{N}(x)| \leq \frac{1}{\sin^{2}\frac{x}{2}} + \frac{|\frac{N}{2}x|}{N \sin^{3}(\frac{N}{2})}
$$
\n, where we use the

\n
$$
|F'_{N}(x)| \leq \frac{A}{X^{2}} \text{ by } \text{ using}
$$
\n
$$
|S\ln x| \geq \text{Const} \cdot |X| \text{ on } [-\frac{\pi}{2}, \frac{\pi}{2}]
$$
\nand

\n
$$
|S\ln x| \geq \text{Const} \cdot |X| \text{ on } [-\frac{\pi}{2}, \frac{\pi}{2}]
$$